Lecture 18. Methods for solving the radiative
transfer equation. Part 1: Two-stream
approximations.

Objectives:

1. Concepts of the reflection and transmission of an atmospheric layer.
2. Two-stream approximations.

3. Eddington approximation.

4. Delta-function scaling.

Required reading:

LO2:6.3.1, 6.5




1. Concepts of transmission and reflection in an
atmospheric layer.

Consider an atmosphere with optical depth T-
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Al (0. . @) can be considered as the reflected diffuse intensity

[ (7%, — . ) can be considered as transmitted diffuse intensity

Reflection function of an atmospheric layer 1s defined as
1 ,.
R(u,o,u,,0,)=xl (0,u,0) u,F, [18.1]
Transmission function of an atmospheric layer 1s defined as

T(U,Q U, @) = .?rf‘l’{'r*,—;.f,go),-’ Uy Fy [18.2]



NOTE: Eq.[18.2] uses the diffuse intensity, therefore 7 (4. ¢.u,.p,) 1salso called the

diffuse transmission function.

Transmission function for direct solar radiation 1s defined as

T
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Planetary albedo (or local albedo or reflection) 1s associated with the reflected
{upward) flux and defined as
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Diffuse transmission is associated with transmitted (downward) flux and defined as
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For the azimuthally independent case, Eqs.[18.4]-[ 18.5] reduce to
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Consider a planet of radius a. The total amount of energy per unit time 1s
2
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Spherical (or global) albedo 15 a ratio of the energy reflected by the entire planet to the

energy incident on it and defined as
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Global diffuse transmission 1s defined as
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2. Two-stream approximations.

e Two-stream methods (such as Eddington’s) provide analytical solutions to
the single layer plane-parallel radiative transfer equation.

e There are many related two-stream methods that approximate the angular
radiance field with two numbers:
e.g. constant hemisphere [I, I7], two point quadrature [I{ gy ), Ii—pq )],
Eddington - 0°th and 1°st moment [[ipg) — Iy + Iip).

e These methods are generally only accurate for fluxes.
However, through a two step process, Eddington’s second approximation
aives accurate radiances.

e Two-stream methods are used where computational speed is important, such
as climate models.

Fourier azimuth series of RTE

The plane-parallel solar radiative transfer equation 1s
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where the last term 1s the pseudosource of diffuse radiation.



Plane-parallel radiative transter is often solved with a Fourier series in ¢:
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The m — (0 term is the azimuthal average. Iy(7, it).

Use addition theorem of spherical harmonics for phase function
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where ap, — (2 — c’inm_;%ﬁ% and the Legendre series coefficients w; are defined
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This is the major reason for using Legendre series for phase functions.

Substitute the Fourier series for I{p, ¢ ) and the addition theorem phase function
in RTE. Scattering integral has [ cosm(d — ¢') cosm'(¢p — &' )dep — 8, Which
gets rid of m sum.

Radiative transfer equation becomes {leaving off diffuse source)
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Fourter azimuthal modes separate: N+1 separate equations (m — (), ..., N).




Simple approximation for intensity.

Underlying idea:

Because radiation flux and heating rates are angular-averaged properties, one can expect
that details of the angular variation of mtensity are not very important for the predictions
of these quantities.

Strategy:

Introduce an “effective”™ angular averaged intensity (stream). But one must decide on how

. o o . . )
to determine the “effective™ intensity (1.e., the effective scattering angle ).

Disadvantages of the two-stream approximations:

Two-stream methods provide acceptable accuracy but over a restricted range of the
parameters. There 1s no a priory method to estimate the accuracy. so one needs to use the
“exact” method to obtain an accurate solution which can be used to estimate the accuracy
of two-stream solutions.

Advantages of the two-stream approximations:

Two-stream approximations are computationally efficient (therefore they are often used

in climate models) and often sufficiently accurate.



Azimuthally Averaged RTE

Fluxes need only m — () mode:
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Azimuthally averaged phase function
| i . _ N
Pl p') 5= Plu, o p', ¢ ddd — 3 wy Blp)Fip')
=T =0

Possible strategies to define the effective scattering angle:
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i) define tf ~ as the mtensity-weighted angular means
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For isotropic radiation filed, Eq.[18.10] gives ¥ =1/2
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ii) detine I~ as the root-mean square value
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For isotropic radiation filed, Eq.[18.11] gives 7™ = 1 /4f3
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NOTE: A problem with the above two approaches (Eqs.[18.10] and [18.11]) 1s that we

don’t know a priori the angular distribution on the intensity.

A better strategy is to utilize the Gaussian quadratures

Gaussian quadrature applied to any function f{p) gives
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where a; are the weights defined as
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and p; are the zeros of the even-order Legendre polynomials Pau(p), and the prime
denotes the differentiation with respect to .

NOTE: Table 6.1 mn LO2 hists Gaussian points pj and weights @y forn =1, 2. 3 and 4.



Recall the equation of the radiative transfer for the diffuse intensity Eq.[17.7] for the
azimuth-independent case
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Using Gaussian quadratures, we can re-write this equation as
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where § =-n, n and Wi(-n, n) represent the directions of radiation streams.



In the two-stream approximation, one takes only two streams (1.e., ) =-1 and 1) and N=1.

Note in table 6.1 in LO2 that g = and a; = a; =1

1
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For this case., Eq.[18.14] splits mto two equations
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fraction of energy and (7-b) 1s forward scattered energy.



The solutions of Eqs.[18.15a.b] are (see LO2,pp.305-306)
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The constant K and H are determined from the boundary conditions on the top and at the
bottom of the atmospheric layer. Using the boundary conditions given by Eq.[17.10] (i.e..
no diffuse downward radiation at the top of the atmosphere and no reflection from the
surface), we have

_Evexpl =T * [y ) - puexp( —kTF)
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From the upward and downward intensities we can write expressions for upward and

downward diffuse fluxes in the two-stream approximations:

F'(ty=2mu 1" (t,u,) [18.17a]

F'(r)= Zﬂjzflfl(h—;f,) [18.17b]




3. Eddington approximation.

Azimuthally averaged diffuse intensity and scattering phase function may be expanded in

terms of Legendre polynomials as

Hr.u)= Zh{r}f’,{n}
f=0

N
Plu.pt’y =Y @, P(u)F ()

I=i1
Note that Py(guy=1and F{u)=u.
Strategy of the Eddington approximation:
Approximate the radiance field and scattering phase function to first order in p.
From the above equations,
I ouy=Tg(c)y+ Ii(z)pu : -1 u =1 [18.18]
Pla,p’y=1+3guu’ [18.19]



Put Egs.[18.18] and [18.19] into the azimuthally averaged radiative transfer equation
(Eq.[17.7), we have
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Doing the integral in Eq.[18.20] results in
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Rearranging terms gives
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First integrate over i from —1 to 1 and then multiply by u and integrate from —1 to 1 to

get two coupled equations:
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Differentiate Eq.[18.23b] by 1 and substitute in Eq.[18.23a]
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where A~ = R — is the eigenvalue.
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NOTE: Eq.[18.24] is known as diffusion equation for radiative transfer.

The solution of Eq.[18.24] for I, is exponential in T

Iy = Kexpl kr)y+ H expl —kT)+ W exp( —7/u,) [18.25]
where
W= S, F, l +f“] — mj.;.}

4r k= —=1/u;

and the integration constants K and H are to be determined from the boundary conditions.

Similarly, the solution for 7; can be determined as
I, =aK exp( kt)—al exp( —kt)—-Cexpl —T/u,) [18.26]
where a® = 3(1-ax)(1-ang)
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Thus the diffuse fluxes in the Eddington approximation are
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e The two-stream and Eddington methods are good approximations for optically

L
thick layer, but they may produce maccurate results for thin layers and strong
absorption. The main problem is that the phase function s highly peaked in the

forward direction.

For the opticallv thin atmosphere, the albedo and diffuse transmission are

Pfy)=w (1/2-3gu, ' 4)t*/ 1,

Hug)=1l—-r—(1l-w,)t */ u, [18.29]

Problem: negative reflected flux for gug =2/3



Eddington Solution Results

The standard boundary conditions for a single layer are no incident radiation from
above and below: FHO) — 0 and F1(*) — 0.

The solution 1s quite complicated (e.g. see Meador and Weaver, 1980), so we look
at two special cases for a uniform layer of optical depth 7*.

The optically thin solution for reflected and transmitted flux fraction is
R—wil/2=3gpm/ N7 /gy T —=1—R— (7"l —w)

Problem: negative reflected flux for gugy = 2/3.

»  Example of Eddington solution results

Consider a uniform layer of optical depth t*. In the Eddington approximation for

conservative scattering (mg=1). the albedo (fractional reflected flux) of the layer is

Lt

— Mo ) —exp( -7 * /)
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P, ) = [18.30]
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Figure 18.1 Comparison of Eddington and multistream albedo for conservative scattering

{ A=0.65 um, r,= 10 um, g =0.862, i.e. cloud albedo)



Some properties of reflectivity:

v" Linear for T =<1 and saturation for t =>1

v More forward scattering means less reflection { g T= » )

v" Higher solar zenith angle means more reflection unless optically thin
(1t y=>r T)

v' Multiple scattering amplifies absorption (L= 2/3: g =(.85)

T=1. =099 =>1r=0.096, A=0.018

T

10, 0= 099 =>1=045 A =015
T=100, 0= 099 ==>1 =055 A =045

T =].[|~ 0= | ==r= “_f_}z" A =10



4. Delta-function scaling.

Scattering by atmospheric particulates has the forward diffraction peak and therefore

two-term expansion of the scattering phase function {as was done above) 1s not adequate.

Delta-function adjustment replaces a highly peaked phase function with:
{1) a delta function in the forward direction
{2) a smoother scaled phase function (P")
Delta scaling of phase function with forward scattering fraction f:
Pleos ©) =2 f5(l —cos O)+(l— f)1P (cos ©) [18.31]

Thus the asymmetry parameter 1s
1
g =2 Pleos ®)cos Odcos © = f+(1- f)g’ [18.32]

1
where g” 1s the scaled asymmetry parameter.

The scaled scattering and absorption optical depth must be

,

ro=(l-f)r, and 7, =7

i



Delta Scaling of the Radiative Transfer Equation
Can delta scale any form of the radiative transter equation.
Azimuthally averaged RTE:

dl ol
p—=Imp)— [ | Plp, p"\ {7, pydp" + ST, p)
- 5 -

Put in our approximation for the true phase function

dl | 1
- I — fwl — E[_l — flw .[_1 Plp, ' Iiphdy' + 8
1 flw
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This 1s the same radiative transfer equation 1f we scale variables!

_t 8 ) []_fh""" ' .'-?_f
7 (l—wfir w=—"— g =—=
| —wf | —f
Procedure: delta scale extinction (3" = (1 — wf)3), single scattering albedo, and

phase function, then use in regular radiative transter equation.

How does scaling change the optical properties?



e Delta-function adjustment is introduced to incorporate the forward peak
contribution by adjusting optical properties such that the fraction of scattered
energy in the forward direction. f, 1s removed from the scattering parameters

o’ - S ,I' ! = U - )% L~ )@, r'={(1- ,_fI(U.j T
' f | — f,

» The incorporation of the d-function adjustment into two-stream and Eddington

methods greatly improves their accuracy.

How to get the delta scaling fraction

Delta-isotropic: make scaled phase function 1sotropic g’=0=>f=g

@ ,
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Delta-Eddington: make two term scaled function: choose [ =

For instance, for Henyey-Greenstein phase function: f= g

g , (- gho . 2
thus .L-f’ e L= L‘—_‘:I” ff ={l - oy (;__]D IT
| + ¢ ' | — o @,



Delta-M Approximation: gives accurate fluxes in numerical radiative transfer
models with M discrete “streams™ per hemisphere:
' Xt — f ; _ wi
Xi=7—F [ <2M f=xm X
L=

Delta-Eddington is case with M — 1.
Delta-M phase function has much less oscillation than truncated phase function
(wy — U forl = 2M).

Delta Scaling Summary

Scaled radiative transfer system has:
Lower optical depth + less forward scattering = same reflection, etc.

Similarity principle: 7. w, g 1s equivale T, W,
Similarity principle: 7. w, g is equivalent to 7', ', ¢'

Lower scaled optical depth — higher direct beam transmission.
Must add diffuse and direct transmitted flux to get “correct™ total.



Legendre Coe flicients

Effect of Legendre Series Truncation on Phase Function

i
—— Full phase function
-~ Truncated phase function  Ny,=13
107 bt — Delta-M phase function  Nj,=15
E | (3 E
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— Delta-M phase function Ny,,=13

Comparison of a Mie phase function for cloud droplets with the phase function of the Legendre

series truncated at order ! = 15 without and with delta-M scaling applied (top). The original and

delta-M scaled Legendre series coefficients of the phase function (bottom).
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